Chapter 19: Thermal Properties

ISSUES TO ADDRESS...

- How do materials respond to the application of heat?
- How do we define and measure...
 - -- heat capacity?
 - -- thermal expansion?
 - -- thermal conductivity?
 - -- thermal shock resistance?
- How do the thermal properties of ceramics, metals, and polymers differ?

- 1. Introduction
- 2. Heat Capacity
- 3. Thermal Expansion
- 4. Thermal Conductivity
- 5. Thermal Stresses
- Summary

1. Introduction

- Thermal property refers to the response of a material to the application of heat
- As a solid absorbs energy in the form of heat, its temperature rises and its dimensions increase
- The energy may be transported to cooler regions of the specimen if temp. gradients exist. (Zeroth law of thermodynamics)
- Heat capacity, thermal expansion, thermal conductivity are important

Thermostat

– a device used to regulate temperature

Use the phenomenon of thermal expansion

The consequence of unseasonably high temperatures on July 24, 1978

Heat Capacity

The ability of a material to absorb heat; ratio of energy change and the resulting temperature change.

 Quantitatively: The energy required to produce a unit rise in temperature for one mole of a material.

heat capacity
$$C = \frac{dQ}{dT}$$
 energy input (J/mol)
(J/mol-K)

- Two ways to measure heat capacity:

 - C_p : Heat capacity at constant pressure. C_v : Heat capacity at constant volume.

 C_{D} usually > C_{V}

Heat capacity has units of

$$\frac{J}{mol \cdot K} \left(\frac{Btu}{lb - mol \cdot {}^{\circ}F} \right)$$

Chapter 19 - 5

Dependence of Heat Capacity on Temperature

 Heat capacity... -- increases with temperature -- for solids it reaches a limiting value of 3RR = gas constant $C_v = \text{constant}$ = 8.31 J/mol-K 0 T (K) θ_D Ω

Adapted from Fig. 19.2, *Callister & Rethwisch 10e*.

- From atomic perspective:
 - -- Energy is stored as atomic vibrations.
 - -- As temperature increases, the average energy of atomic vibrations increases.

Debye temperature

(usually less than T_{room})

Chapter 19 - 6

Atomic Vibrations

Atomic vibrations are in the form of lattice waves or phonons

Normal lattice positions for atoms
Positions displaced because of vibrations

Fig. 19.1, *Callister & Rethwisch 10e*. (Adapted from "The Thermal Properties of Materials" by J. Ziman. Copyright © 1967 by Scientific American, Inc. All rights reserved.)

Phonons

- In 1932 Soviet physicist Igor Tamm proposed that the energies of the "atomic oscillators" was quantized, called phonons
- When we think of atoms vibrating due to their thermal energy, we assumed they moved independently
- However, ∵bonding, ∴the motions are connected
 leading to a wave behavior
- Materials are divided into phonon conductors and electron conductors of heat:

Specific Heat: Comparison

Material

increasing c_p

<u>Polymers</u> Polypropylene Polyethylene Polystyrene Teflon

<u>Ceramics</u> Magnesia (MgO) Alumina (Al₂O₃) Glass

<u>Metals</u> Aluminum Steel Tungsten Gold c_p (J/kg-K) at room T

1925

1850

1170

1050

940

775

840

900

486

138

128

- c_p (specific heat): (J/kg-K) C_p (heat capacity): (J/mol-K)
- Why is c_p significantly larger for polymers?

Selected values from Table 19.1, *Callister & Rethwisch 10e*.

Thermal Expansion

Materials change size when temperature is changed

Atomic Perspective: Thermal Expansion

Asymmetric curve:

- -- increase temperature,
- -- increase in interatomic separation
- -- thermal expansion

Symmetric curve:

- -- increase temperature,
- -- no increase in interatomic separation
- -- no thermal expansion

Fig. 19.3, *Callister & Rethwisch 10e*. (Adapted from R. M. Rose, L. A. Shepard, and J. Wulff, The Structure and Properties of Materials, Vol. IV, Electronic Properties, John Wiley & Sons, 1966. Reproduced with permission of Robert M. Rose.)

Coefficient of Thermal Expansion: Comparison

	Material	$\alpha_{\ell} (10^{-6}/^{\circ} \text{ C})$		
	 Polymers 	at room T		
	Polypropylene Polyethylene	145-180 106-198	Polymers have larger α_{ℓ} values because of	
	Polystyrene	90-150	weak secondary bonds	
	Teflon	126-216		
χ_{ℓ}	Metals		• Q: Why does $lpha_\ell$	
increasing $lpha_\ell$	Aluminum	23.6	generally decrease	
	Steel	12	with increasing	
	Tungsten	4.5	bond energy?	
	Gold	14.2		
	<u>Ceramics</u>			
	Magnesia (MgO)	13.5	Selected values from Table 19.1,	
	Alumina (Al ₂ O ₃)	7.6	Callister & Rethwisch 10e.	
	Soda-lime glass	9		

0.4

Silica (cryst. SiO₂)

Thermal Expansion: Example

- Ex: A copper wire 15 m long is cooled from 40 to -9° C. How much change in length will it experience?
- Answer: For Cu $\alpha_{\ell} = 16.5 \times 10^{-6} (^{\circ}C)^{-1}$

rearranging Equation 17.3b

 $\Delta l = \alpha_{l} l_{0} \Delta T = [16.5 \times 10^{-6} (1/^{\circ}C)](15 \text{ m}) [40^{\circ}C - (-9^{\circ}C)]$

 $\Delta \boldsymbol{\ell} = \boldsymbol{0.012} \ \boldsymbol{m} = \boldsymbol{12} \ \boldsymbol{mm}$

Invar (Fe-Ni alloys) and

other low-expansion alloys (Be-Cu-Fe alloys), Gluecydur

Thermal Conductivity

The ability of a material to transport heat.

• Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

$$\mathbf{k} = \mathbf{k}_{l} + \mathbf{k}_{e}$$

Thermal Conductivity: Comparison

	Material	<i>k</i> (W/m-K)	Energy Transfer Mechanism	
	<u>Metals</u>	· · ·		
	Aluminum	247	atomic vibrations	
	Steel	52	and motion of free	
	Tungsten	178	electrons	
	Gold	315	CICCUONS	
×	<u>Ceramics</u>			
D	Magnesia (MgO)	38		
	Alumina (Al ₂ O ₃)	39	atomic vibrations	
6 G	Soda-lime glass	1.7		
ncreasing	Silica (cryst. SiO ₂) 1.4		
Ľ.	<u>Polymers</u>			
	Polypropylene	0.12		
	Polyethylene	0.46-0.50	vibration/rotation of	:
_	Polystyrene	0.13	chain molecules	
	Teflon	0.25		
	Selected values from Table 1	9.1. Callister & Rethwisch	10e.	

Selected values from Table 19.1, Callister & Rethwisch 10e.

Chapter 19 - 16

Thermal conductivity versus composition of Cu-Zn alloys

and Pure Metals, Vol. 2, 9th edition, H. Baker (Managing Editor), 1979. Reproduced by permission of ASM International, Materials Park, OH.

Wiedemann-Franz law

- For metals, the ratio of thermal conductivity and the product of the electrical conductivity and temperature should be a constant
- $L = k / (\sigma T) = 2.44 \times 10^{-8} \Omega.W/K^2$
- Because free electrons are responsible for both electrical and thermal conductivity for pure metals.

Adapted from W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, *Introduction to Ceramics,* 2nd edition. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Thermal Stresses

- Occur due to:
 - -- restrained thermal expansion/contraction
 - -- temperature gradients that lead to differential dimensional changes

Thermal stress = σ = $E\alpha_{\ell}(T_0 - T_f) = E\alpha_{\ell}\Delta T$

Example Problem

- -- A brass rod is stress-free at room temperature (20° C).
- -- It is heated up, but prevented from lengthening.
- -- At what temperature does the stress reach -172 MPa?

Solution:

Example Problem (cont.)

The thermal stress can be directly calculated as

 $\sigma = E(\varepsilon_{\text{compress}})$

Chapter 19 - 22

Noting that $\varepsilon_{compress} = -\varepsilon_{thermal}$ and substituting gives

$$\sigma = -E(\varepsilon_{thermal}) = -E\alpha_{\ell}(T_f - T_0) = E\alpha_{\ell}(T_0 - T_f)$$

Rearranging and solving for T_f gives

Thermal Shock Resistance

- Occurs due to: nonuniform heating/cooling
- Ex: Assume top thin layer is rapidly cooled from T_1 to T_2 rapid quench

 T_1

 $\leftarrow \Box \rightarrow Tension develops at surface$

$$\sigma = -E\alpha_{\ell}(T_1 - T_2)$$

Critical temperature difference for fracture (set $\sigma = \sigma_f$)

$$\frac{(T_1 - T_2)_{\text{fracture}}}{\uparrow} = \frac{\sigma_f}{E\alpha_\ell}$$

set equal

• (quench rate)_{for fracture} = Thermal Shock Resistance $(TSR) \propto \frac{\sigma_f k}{E\alpha_l}$

• Large *TSR* when
$$\frac{\sigma_f \kappa}{E\alpha_l}$$
 is large

tries to contract during cooling

resists contraction

 $(T_1 - T_2)$

Temperature difference that

can be produced by cooling:

quench rate

Thermal Protection System

• Application:

Chapter-opening photograph, Chapter 23, *Callister 5e* (courtesy of the National Aeronautics and Space Administration.)

Silica tiles (400-1260°C):
 -- large scale application

Fig. 19.3W, *Callister 5e.* (Fig. 19.3W courtesy the National Aeronautics and Space Administration.)

Fig. 19.2W, *Callister 6e.* (Fig. 19.2W adapted from L.J. Korb, C.A. Morant, R.M. Calland, and C.S. Thatcher, "The Shuttle Orbiter Thermal Protection System", *Ceramic Bulletin*, No. 11, Nov. 1981, p. 1189.)

-- microstructure:

~90% porosity! Si fibers bonded to one another during heat treatment.

Chapter 19 - 24

Fig. 19.4W, *Callister 5e.* (Fig. 219.4W courtesy Lockheed Aerospace Ceramics Systems, Sunnyvale, CA.)

Material	$(J/kg\cdot K)^a$	$[(^{\circ}C)^{-1} \times 10^{-6}]$	k (W/m·K) ^b	$\begin{bmatrix} L \\ [\Omega \cdot W/(K)^2 \times 10^{-8}] \end{bmatrix}$
		Metals		
Aluminum	900	23.6	247	2.20
Copper	386	17.0	398	2.25
Gold	128	14.2	315	2.50
Iron	448	11.8	80	2.71
Nickel	443	13.3	90	2.08
Silver	235	19.7	428	2.13
Tungsten	138	4.5	178	3.20
1025 Steel	486	12.0	51.9	
316 Stainless steel	502	16.0	15.9	
Brass (70Cu-30Zn)	375	20.0	120	
Kovar (54Fe–29Ni–17Co)	460	5.1	17	2.80
Invar (64Fe–36Ni)	500	1.6	10	2.75
Super Invar (63Fe-32Ni-5Co)	500	0.72	10	2.68
		Ceramics		
Alumina (Al ₂ O ₃)	775	7.6	39) <u></u> 1
Magnesia (MgO)	940	13.5°	37.7	
Spinel (MgAl ₂ O ₄)	790	7.6 ^c	15.0 ^d	_
Fused silica (SiO ₂)	740	0.4	1.4	
Soda–lime glass	840	9.0	1.7	
Borosilicate (Pyrex) glass	850	3.3	1.4	3 3
		Polymers		
Polyethylene (high density)	1850	106-198	0.46-0.50	
Polypropylene	1925	145-180	0.12	
Polystyrene	1170	90-150	0.13	
Polytetrafluoroethylene (Teflon)	1050	126-216	0.25	
Phenol-formaldehyde, phenolic	1590-1760	122	0.15	
Nylon 6,6	1670	144	0.24	
Polyisoprene	(1)	220	0.14	

7

Table 20.1 Thermal Properties for a Variety of Materials

^aTo convert to cal/g·K, multiply by 2.39×10^{-4} . ^bTo convert to cal/s·cm·K, multiply by 2.39×10^{-3} . ^cValue measured at 100°C.

^dMean value taken over the temperature range 0°C to 1000°C.

Thermodynamics

- Pretty much everything to do with heat and heat flow is covered by thermodynamics
- When two bodies of different temperatures are brought in contact heat, Q, flows from the hotter to the cooler
- Alternatively, a temperature increase can be achieved by doing work, W, on the system
 - e.g. electrical heating, friction, ...
- In either case, there is a change of energy of the "system"
 - $\Box \Delta \mathbf{E} = \mathbf{W} + \mathbf{Q}$
 - where Q is the heat received from the environment
 - The first law of thermodynamics

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Coefficient of thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values
- Thermal stresses: --introduced by temperature change
 --Thermal shock resistance:
 - -- the ability of a material to be rapidly cooled and not fracture

-- is proportional to
$$\frac{\sigma_f k}{E\alpha_p}$$

Summary II

- Thermal properties of materials are connected with atomic bonding and electronic effects
- Energy is stored in 'atomic oscillators'
 - classical treatments lead to an approximate value for the heat capacity
 - a full treatment involves phonons
- Phonons are quantized units of lattice vibration
 - effectively heat particles
- Thermal conductivity takes place either by electrons or phonons, depending on the material
- Thermal expansion is related to atomic bonding

Homework Questions

- 20.1
- 20.7
- 20.10
- 20.14
- 20.25

